

Dewar Mechanical Design Fred Hearty

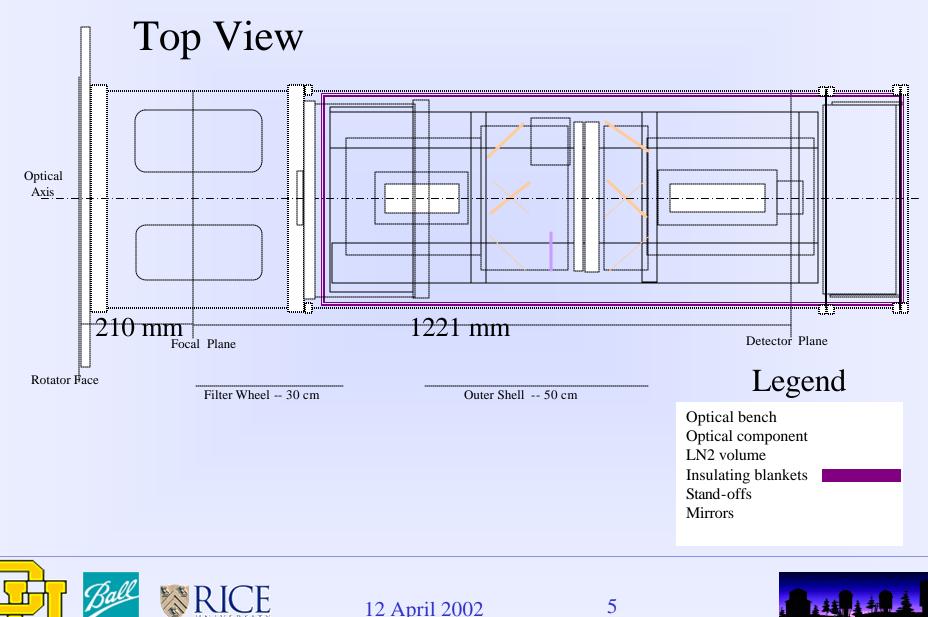
12 April 2002 CASA-ARL Boulder, CO

Overview

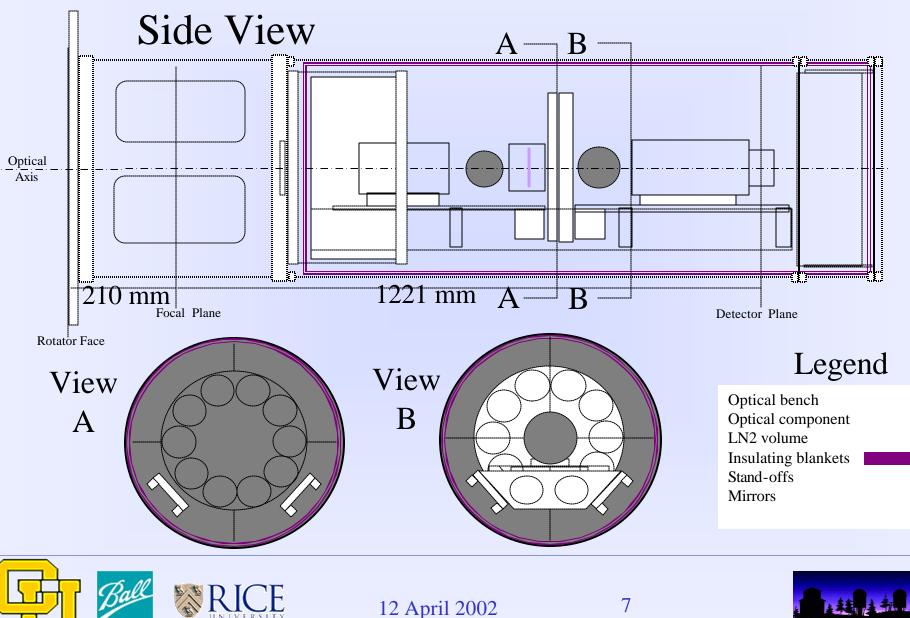
- Requirements
- Instrument Structure
 - Front Assembly
 - Optical Bench
 - LN2 Reservoir
 - Insulating Blankets
- Maintenance Considerations
- Thermal Loads
- Overall Mass

Requirements

- Mount instrument horizontally at Nasmyth 2 port (will also consider side port in structural design)
- Rotate plus or minus 270 degrees
- 24 hour minimum hold time; >48 hour target
- Structurally support instrument within tolerances
 - Image shift during integration, centering during rotation, image quality as discussed during Opto-Mechanical
 - Additional tolerances to be derived from optical design
- Ease of access/maintenance


Instrument Structure

- Front Assembly
 - Rigid support for dewar assembly, minimizes dewar volume
 - Warm focal plane, field stop, entrance window
 - Calibration unit and injection mirror
 - All electrical connections through front dewar wall (unless warm detector electronics need to be close to focal plane array)
 - Vacuum pump-down connection
 - Dry nitrogen back-fill, vent connections
 - Possible warm air, dry nitrogen, nitrogen boil-off across entrance window


Instrument Structure (continued)

- Optical Bench
 - Cantilevered structure from G-10 standoff
 - Filter wheel extends below optical bench
 - Beam and frame construction being evaluated
 - Full cantilever, end-support options
 - Greatest structural challenge

Instrument Structure (continued)

- LN2 reservoir
 - Positioned beyond focal plane array
 - Independent of optical components/alignment
 - Thermal standoff of G-10
 - Fill/vent connections through end plate, bellows assembly
 - Centerline vent, maximum half full
 - Removes with far end of vacuum chamber
 - Thermal connection with copper tabs
 - Cryo-sorption pump (probably activated charcoal) attached to tank
 - Volume 10-15 liters as determined by thermal design (6.25 liters per 10 cm of tank width)

Instrument Structure (continued)

- Insulation blankets
 - Can-in-a-can design, multi-layered mylar plus spacer
 - Remove with vacuum chamber shell
 - Separate front end blanket, LN2 tank insulation
 - Near 100% coverage (less entrance window)
 - Number of layers to be dictated by thermal design

Maintenance Considerations

- Access sequence
 - Supports/strap at front assembly
 - Remove LN2 end bell -- access FPA
 - Disconnect end support (if option incorporated)
 - Remove vacuum shell -- access all optical bench
 - No connections broken; minimal impact on optical alignment
- Filter changes/additions
 - Use above sequence
 - No access through wall
- Optic bench locked during transport
 - Minimize effect of shocks on thermal standoff

Thermal Loads

- Standoffs
 - For 20 cm length, 40 cm diameter, G-10 -- .25 W/mm thickness
 - Front end standoff, ~1.5 W; far end, ~.5 W
- Shell radiation load
 - 2.3 m^2 surface area, approximately 0.5 W/ m^2
- Entrance window (largest heat load)
 - 3-5 W, based on OSIRIS design and in-house calculation
 - Baffle arrangement, reflective shutter, other options need to be considered
- Other penetrations(LN2 tubes, electrical, etc.)
 - Approximately 2 W total
- Total -- Approximately 10 W (~5.4 liters LN2/day)

Overall Mass

- Optic bench with optics, detector/electronics, and standoff -- ~50 kg
 - Approximately 50 liters of LN2 to cool
- LN2 tank, full (half-fill configuration) -- ~20 kg
- Shell, front assembly with components -- ~80 kg

Total -- Approximately 150 kg (~330 pounds) without mounting plate

