NIC-FPS Optical Distortion Mapping and Correction

	Date:
	July 5, 2005

	Document Number:
	

	Revision:
	Second Release

	Contract No.:
	

	CDRL No.:
	

	Prepared By:
	
	
	28-Jun-05

	
	Anton Bondarenko
	
	Date

	
	
	
	

	Reviewed By:
	
	
	

	
	Stephane Beland
	
	Date

	
	
	
	

	Reviewed By:
	
	
	

	
	Fred Hearty
	
	Date

	
	
	
	

	Approved By:
	
	
	

	
	Nathaniel Cunningham
	
	Date

	
	
	
	

	Approved By:
	
	
	

	
	Robert Valentine
	
	Date

	
	
	
	

	Approved By:
	
	
	

	
	Carl Schmidt
	
	Date

	
	
	
	

Center for Astrophysics & Space Astronomy

University of Colorado

Campus Box 593

Boulder, Colorado 80309

	REVISIONS

	Letter
	ECO No.
	Description
	Check
	Approved
	Date

	
	
	Initial Release
	
	
	

	
	
	Second Release
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	Original Release
	
	THE UNIVERSITY OF COLORADO

	Name
	Date
	At Boulder

	Drawn:

	
	The Center for Astrophysics and Space Astronomy

	Reviewed:

	
	

	Approved:

	
	Document Name

	
	
	

	
	
	
	
	
	

	
	
	Size
	Code Indent No.
	Document No.
	Rev

	
	
	A
	
	
	

	
	
	Scale: N/A
	
	

	1. Introduction
	2

	2. The Distortion Map and Best-Fit Functions
	3

	 2.1 The Initial Distortion Map and Initial Best-Fit Functions
	4

	 2.2 Calibration of Other Images
	7

	 2.3 Combining and Fitting the Data
	8

	 2.4 The Final Distortion Map and Final Best-Fit Functions
	10

	3. Two Methods of Removing Distortion
	18

	 3.1 Correcting the Image by Remapping
	19

	 3.2 Correcting the Image through SIP (Simple Imaging Polynomials)
	25

	4. Summary
	29

	Appendix A - ‘nicfps_unwarp.pro’
	30

	Appendix B – ‘add_distortion_keywords.pro’
	33

1.
INTRODUCTION

This document describes the process used to create the NIC-FPS optical distortion map and two methods of applying the necessary corrections to NIC-FPS FITS images.

The distortion map was generated in IDL by comparing the actual pixel positions of star centers on 10 NIC-FPS FITS images with the theoretical pixel positions of where the star centers should show up if the system had no optical distortions. These theoretical pixel positions were obtained by converting the right ascension and declination information in the 2MASS All-Sky Point Source Catalog, which reports an astrometric uncertainty of less than 0.2”, to pixel coordinates on the NIC-FPS FITS image using the FITS header. The differences between the theoretical and actual pixel positions were stored as errors. Using a third-order polynomial model, various functions were generated to fit the data. A more detailed explanation of every best-fit function and its specific purpose will be covered in the following sections.

After generating the necessary functions to describe the distortion, two different methods of correcting FITS images were implemented in IDL. The first method, ‘nicfps_unwarp.pro’, uses the distortion functions to re-allocate flux values in one or more FITS arrays. The modified array is then written to a new FITS file and represents the undistorted image. The second method, ‘add_distortion_keywords.pro’, adds SIP (Simple Imaging Polynomials) keyword-value pairs determined from the distortion functions to the headers of all the FITS files in a certain directory and saves the files under the name ‘filename_gc.fits’, where filename is the name of the original, unmodified file. This method leaves the images unchanged and only modifies the way the world coordinates are calculated from the pixel coordinates. The SIP method requires the coordinate (x = CRPIX1, y = CRPIX2) to be the zero-distortion point. Since the best-fit functions were determined using (x = 512.000, y = 512.000) as the zero-distortion point, any header using SIP must have CRPIX1 = 512.000 and CRPIX2 = 512.000. The third section provides a detailed explanation of how each method works. The IDL codes for ‘nicfps_unwarp.pro’ and ‘add_distortion_keywords
.pro’ are included in the appendices.

2.
THE DISTORTION MAP AND BEST-FIT FUNCTIONS

The distortion map was created in IDL by comparing actual pixel coordinates of star centers on 10 NIC-FPS FITS images with theoretical pixel coordinates of star centers calculated from 2MASS All-Sky Point Source Catalog right ascensions and declinations. The differences between actual and theoretical pixel coordinates were stored as errors, and various functions were generated to fit the data. The best-fit functions were then applied to two correction methods, described in the third and fourth sections.

The IDL procedure used to create the distortion map and polynomial fits consisted of four functions, all of which were called from the main procedure, ‘correlation_new.pro’. The first function, ‘refPixelVectors.pro’, generated the initial distortion map and the initial polynomial fits, whose purpose will soon be explained. The second function, ‘secondImage.pro’, configured the FITS header for a zero-distortion point at (x = 512.000, y = 512.000), compared actual and theoretical pixel positions, and stored them as errors. This function was called 10 times, once for every image used to create the distortion map and best-fit functions. The third and fourth functions, ‘plotDist.pro’ and ‘plotDist2.pro’, generated various best-fit functions based on a third-order polynomial model using all the data from the 10 images. These functions also created several convenient vector plots.

It is important to note that the header files were never actually modified during the creation of the distortion map and best-fit functions. Only arrays containing all the header information were modified in the software with ASTRONLIB’s ‘sxaddpar.pro.’ Whenever setting certain keywords to certain values in a FITS header is mentioned in this section, it implies only the modification of the header array.

2.1 The Initial Distortion Map and Initial Best-Fit Functions

Since the distortion map was produced by combining data from 10 different images, each image’s FITS header had to be calibrated to the same zero-distortion point, arbitrarily chosen as the center pixel, (x = 512.000, y = 512.000). In other words, each image header was configured such that the center pixel (set in CRPIX) displayed the correct sky coordinates (set in CRVAL). Of course, the images used to create the map did not simply happen to have stars at their very centers whose sky positions were used for the CRVAL values. Instead, setting pixel (x = 512.000, y = 512.000) to the right sky coordinates required an initial distortion map and initial best-fit functions.

The initial distortion map and initial best-fit functions were produced in the procedure ‘refPixelVectors.pro’ using the image ‘GRB041219.0151_ds_ss.fits’, which contains a relatively dense star field. The header of this image contained a significant offset. In other words, the sky coordinates of all the stars on the image were off by a systematic amount that was much greater than the error caused by optical distortion. Thus, the first step was to correct for this offset by adjusting the values of CRPIX and CRVAL in the header. An arbitrary star near the center of the field was chosen and the actual pixel position of its center was determined through CEDAR Science Data Viewer’s “Gaussian Emission” procedure. The CRPIX keywords were set to this pixel position. Next, the correct sky coordinates of the star were determined. These were found by looking at a 2MASS image of the same field (from 2MASS Interactive Image Service), visually finding the same star to get the approximate sky coordinates through the 2MASS image header, and then using the 2MASS All-Sky Point Source Catalog to get the exact sky coordinates. The CRVAL keywords were set to the right ascension and declination values from the catalog. This new header configuration eliminated the systematic offset. The new CRPIX (at x = 526.236, y = 510.585, to be exact) was now the zero-distortion point.

The next step was to analyze this image for distortion. Using CEDAR Science Data Viewer’s “Find Stars” procedure, a list of actual pixel positions representing star centers was stored as a .dat file. Another list of correct right ascensions and declinations of stars in the same field was obtained from the 2MASS All-Sky Point Source Catalog and stored as a.txt file. The list of correct right ascensions and declinations was converted to theoretical pixel coordinates using ASTRONLIB’s ‘adxy.pro’. Next, the closest matches between the lists of actual and theoretical pixel coordinates were found using ASTRONLIB’s ‘srcor.pro’. The maximum matching radius was set to 10 pixels in order to avoid false matches. There were 106 matches between the two lists. The matched actual pixel positions, the matched theoretical pixel positions, and the differences between the matched actual and matched theoretical positions (the errors) were stored into arrays.

Next, ASTRONLIB’s ‘mpfit2dfun.pro’ was used to generate two best-fit functions, one for x-pixel error and one for y-pixel error, using a third-order polynomial model. Prior to fitting, the following coordinate transformation was done:

u = x – CRPIX1 (1)

v = y - CRPIX2 (2)

Here, x and y represent actual pixel positions, and u and v represent actual pixel positions on the new coordinate system in which the CRPIX (x = 526.236, y = 510.585) is the origin (u = 0.000, v = 0.000). In essence, this transformation set the zero-distortion point as the origin in order to obtain a better fit. The two fits generated were x-pixel error as a function of actual pixel position (in terms of u and v) and y-pixel error as a function of actual pixel position (in terms of u and v). They had the following form:

X Pixel Error (u, v) = Au + Bv + Cu2 + Dv2 + Euv + Fu3 + Gv3 + Hu2v + Iuv2 (3)

Y Pixel Error (u, v) = Ju + Kv + Lu2 + Mv2 + Nuv + Pu3 + Qv3 + Ru2v + Suv2 (4)

The parameters A through S represent coefficients. The theoretical pixel position (the pixel location where a certain star’s center should be in order for the sky coordinates to display correctly) can be calculated from the actual pixel position (the pixel location where a certain star’s center is on the NIC-FPS FITS image) on the new coordinate system (u, v) as follows:
u’ = u + X Pixel Error (u, v) (5)

v’ = v + Y Pixel Error (u, v) (6)

Here, u’ and v’ represent the theoretical pixel position and u and v represent the actual pixel position on the new coordinate system. The theoretical pixel position in terms of the old coordinate system can be found by substituting (1) and (2) into (5) and (6) and by adding CRPIX1 and CRPIX2, respectively:

x’ = u’ + CRPIX1 = x + X Pixel Error ((x – CRPIX1), (y – CRPIX2)) (7)

y’ = v’ + CRPIX2 = y + Y Pixel Error ((x – CRPIX1), (y – CRPIX2)) (8)

Here, x’ and y’ represent the theoretical pixel position and x and y represent the actual pixel position on the old coordinate system, where CRPIX is at (x = 526.236, y = 510.585). It is important to note that the theoretical pixel positions obtained through the equations above are not exact and depend on how well the best-fit functions predict the distortion.

The best-fit functions obtained here represented CRPIX (x = 526.236, y = 510.585) as the zero-distortion point. The next step was to obtain best-fit functions with the center pixel, (x = 512.000, y = 512.000), as the zero-distortion point, as this was the arbitrarily agreed upon calibration. In order to get these functions, (x = 512.000, y = 512.000) was plugged into (7) and (8). The resulting x’ and y’ represented the pixel location containing the correct sky coordinates of (x = 512.000, y = 512.000). In other words, had there been a star on this image whose center happened to fall at (x = 512.000, y = 512.000), its correct sky coordinates would display at the pixel location (x’, y’) due to distortion. Using ASTRONLIB’s ‘xyad.pro’, the right ascension and declination at pixel position (x’, y’) were obtained. This image’s header now underwent its final modification. Its CRPIX was set to (x = 512.000, y = 512.000), and its CRVAL was set to the right ascension and declination values returned by ‘xyad.pro’ at location (x’, y’). The header was now configured such that the center pixel, (x = 512.000, y = 512.000), had the correct sky coordinates and was the zero-distortion point.

Now that the header was in its final configuration, the process of matching up stars and generating best-fit functions was repeated. ASTRONLIB’s ‘adxy.pro’ was used to convert right ascensions and declinations from the 2MASS catalog to theoretical pixel coordinates. The lists of theoretical and actual pixel coordinates were matched up using ‘srcor.pro’, and 106 matches were found. The matched lists of theoretical pixel coordinates, actual pixel coordinates, and their differences (the errors) were stored into arrays. The actual pixel coordinates underwent the transformation of (1) and (2), and ASTRONLIB’s ‘mp2dfitfun.pro’ was then applied to generate two best-fit functions of the form of (3) and (4). The coefficients A through S were now slightly different, because these best-fit functions represented (x = 512.000, y = 512.000) as the zero-distortion point. Using these coefficients, the theoretical pixel position (x’, y’) can be calculated from the actual pixel position (x, y) through the following equations:

x’ = x + X Pixel Error ((x – 512.000), (y – 512.000)) (9)

y’ = y + Y Pixel Error ((x – 512.000), (y – 512.000)) (10)
This is just equations (7) and (8) with 512.000 for CRPIX1 and CRPIX2. The function ‘refPixelVectors.pro’ completed its task by returning the coefficients A through S of the best-fit functions X Pixel Error and Y Pixel Error from (9) and (10). These were used to calibrate the 10 images used to create the final distortion map and final best-fit functions to the same zero-distortion point of (x = 512.000, y = 512.000). This process is described in the next subsection. Here are vector plots of the initial distortion map (Plot 1) and the initial best-fit functions X Pixel Error and Y Pixel Error (Plot 2).

[image: image1.png]NIC—FPa Uistartion Vectar Field

sonf—
' .
. o G e
400~ N N ,
200~ . _ - <
o . .
—200

—an0- / ;

—600—

—600 —400 —200 0 200 100
NIG—FPS X (pixel)

 [image: image2.png]gest—rit Functian

sonf—
. . B
N i
400~ ~ B
-~
200~
e o .
M ;
—200

ol 7 , N

—600—

—600 —400 —200 0
NIG—FPS X (pixel}

 Plot (1) Plot (2)
The vectors originate at actual pixel positions and point towards theoretical pixel positions. The axes are configured such that the origin on the plots, (u = 0.000, v = 0.000), corresponds to the center pixel, (x = 512.000, y = 512.000), on a NIC-FPS FITS image. The vector magnitudes are multiplied by 10 to amplify the distortion, so a vector of length 50, for example, corresponds to a distortion of 5 pixels on an actual FITS image.

2.2
Calibration of Other Images

The function ‘refPixelVectors.pro’ returned the coefficients of the initial best-fit distortion functions for

(x = 512.000, y = 512.000) as the zero-distortion point. These coefficients allowed for calibration of the 10 images used to create the final distortion map and final best-fit functions. The calibration was done using the function ‘secondImage.pro’. The images used were ‘GRB041219.0024_ds_ss.fits’, ‘GRB041219.0040_ds_ss.fits’, ‘GRB041219.0061_ds_ss.fits’, ‘GRB041219.0155_ds_ss.fits’, ‘GRB041219.0163_ds_ss.fits’, ‘GRB.0016_pcl.fits’, ‘GRB.0017_pcl.fits’, ‘GRB.0018_pcl.fits’, ‘GRB.0019_pcl.fits’, and ‘GRB.0020_pcl.fits’.

Each image header initially contained a large offset. In other words, the sky coordinates of all the stars were off by a systematic amount much greater than the distortion. Moreover, this major offset varied for different images. Before calibrating each image to a zero-distortion point at (x = 512.000, y = 512.000), it was necessary to get rid of the offset by correcting the values of CRPIX and CRVAL. On each one of the 10 images, an arbitrary star near the center of the field was chosen. The actual pixel position of its center was determined through CEDAR Science Data Viewer’s “Gaussian Emission” procedure. The CRPIX keywords were set to this pixel position. Next, the correct sky coordinates of the star were determined. These were found by looking at a 2MASS image of the same field (from 2MASS Interactive Image Service), visually finding the same star to get the approximate sky coordinates through the 2MASS image header, and then using the 2MASS All-Sky Point Source Catalog to get the exact sky coordinates. The CRVAL keywords were set to the right ascension and declination values from the catalog. This new header configuration eliminated the systematic offset, and the point (x = CRPIX1, y = CRPIX2) was now the zero-distortion point.

Next, the pixel position (x = CRPIX1, y = CRPIX2) was substituted into equations (9) and (10) for x and y, where X Pixel Error and Y Pixel Error were the best-fit functions returned by ‘refPixelVectors.pro’. The resulting x’ and y’ represented the pixel location of where an object at (x = CRPIX1, y = CRPIX2) would show up if the center pixel, (x = 512.000, y = 512.000), had zero distortion. The CRPIX values in the header were then changed to (x’, y’). In this configuration, the pixel coordinates (x = 512.000, y = 512.000) displayed the correct sky coordinates, since this was now the zero-distortion point. ASTRONLIB’s ‘xyad.pro’ was used to find the sky coordinates of (x = 512.000, y = 512.000). The image’s header then underwent its final modification. Its CRPIX was set to (x = 512.000, y = 512.000), and its CRVAL was set to the right ascension and declination values returned by ‘xyad.pro’ at location (x = 512.000, y = 512.000). This same procedure was repeated for each one of the 10 images used to create the final distortion map and final best-fit functions. Each image was thus calibrated to the same zero-distortion point and CRPIX value of (x = 512.000, y = 512.000).

2.3
Combining and Fitting the Data

After configuring image headers to a CRPIX value and zero-distortion point of (x = 512.000, y = 512.000), the function ‘secondImage.pro’ proceeded to correlate actual and theoretical pixel positions. Each image had an associated .dat file of pixel positions of star centers, created through CEDAR Science Data Viewer’s “Find Stars” procedure. Each image also had an associated .txt file of correct right ascensions and declinations of stars in the same field from the 2MASS All-Sky Point Source Catalog. The list of correct right ascensions and declinations was converted to theoretical pixel coordinates using ASTRONLIB’s ‘adxy.pro’. Then the closest matches between the lists of actual and theoretical pixel coordinates were found using ASTRONLIB’s ‘srcor.pro’. The maximum matching radius was set to 10 pixels in order to avoid false matches. The matched actual pixel positions, the matched theoretical pixel positions, and the differences between them (the errors) were stored into arrays. This procedure was done for all 10 images through repeated calls to the function ‘secondImage.pro’.

Next, the lists of matched actual pixel positions, matched theoretical pixel positions, and differences (errors) from the 10 images were grouped together and sent to the functions ‘plotDist.pro’ and ‘plotDist2.pro’. These functions were responsible for generating final distortion maps and final best-fit functions by using all of the data from the 10 images. Between ‘plotDist.pro’ and ‘plotDist2.pro’, a total of six best-fit functions were generated. Each function’s purpose will be explained in the third section.

The function ‘plotDist.pro’ used ASTRONLIB’s ‘mp2dfitfun.pro’ to generate four third-order polynomial fits from the grouped data of actual pixel positions, theoretical pixel positions, and differences (errors). Prior to fitting, the following coordinate transformations were done:

u = x – CRPIX1 (1)

v = y - CRPIX2 (2)
u’ = x’ – CRPIX1 (11)

v’ = y’ – CRPIX2 (12)

Just as before, the actual pixel coordinates x and y are related to u and v by (1) and (2). The theoretical pixel coordinates x’ and y’ are related to u’ and v’ by (11) and (12). Here, CRPIX1 and CRPIX2 are 512.000, since this is the configuration of all the image headers. The four fits generated were x-pixel error as a function of actual pixel position (3), y-pixel error as a function of actual pixel position (4), x-pixel error as a function of theoretical pixel position (13), and y-pixel error as a function of theoretical pixel position (14), all in terms of u, v, u’, and v’. Their forms are shown below:

X Pixel Error (u, v) = Au + Bv + Cu2 + Dv2 + Euv + Fu3 + Gv3 + Hu2v + Iuv2 (3)

Y Pixel Error (u, v) = Ju + Kv + Lu2 + Mv2 + Nuv + Pu3 + Qv3 + Ru2v + Suv2 (4)

X’ Pixel Error (u’, v’) = A’u’ + B’v’ + C’u’2 + D’v’2 + E’u’v’ + F’u’3 + G’v’3 + H’u’2v’ + I’u’v’2 (13)

Y’ Pixel Error (u’, v’) = J’u’ + K’v’ + L’u’2 + M’v’2 + N’u’v’ + P’u’3 + Q’v’3 + R’u’2v’ + S’u’v’2 (14)
The parameters A through S and A’ through S’ are the coefficients. Here, the coefficients of equations (3) and (4) are more accurate than those of the initial best-fit functions because they were determined from a much larger data set. The theoretical pixel position (the pixel location where a certain star’s center should be in order for the sky coordinates to display correctly) can be calculated from the actual pixel position (the pixel location where a certain star’s center is on the NIC-FPS FITS image) in terms of x and y through the following equations:

x’ = x + X Pixel Error ((x – 512.000), (y – 512.000)) (9)

y’ = y + Y Pixel Error ((x – 512.000), (y – 512.000)) (10)
In (9) and (10), x and y are the actual pixel position and x’ and y’ are the theoretical pixel position. The actual pixel position (the pixel location where a certain star’s center is on the NIC-FPS FITS image) can be calculated from the theoretical pixel position (the pixel location where a certain star’s center should be in order for the sky coordinates to display correctly) in terms of x’ and y’ through the following equations:

x = x’ + X’ Pixel Error ((x’ – 512.000), (y’ – 512.000)) (15)

y = y’ + Y’ Pixel Error ((x’ – 512.000), (y’ – 512.000)) (16)
In (13) and (14), x’ and y’ are the theoretical pixel position, and x and y are the actual pixel position. It is important to note that the theoretical pixel positions obtained through (9) and (10) and the actual pixel positions obtained through (13) and (14) above are not exact and depend on how well the best-fit functions predict the distortion.

The function ‘plotDist2.pro’ used ASTRONLIB’s ‘mp2dfitfun.pro’ to generate two third-order polynomial fits from the grouped data of actual pixel positions and theoretical pixel positions. The fits generated were actual x-pixel position as a function of theoretical pixel position (15) and actual y-pixel position as a function of theoretical pixel position (16). The forms of the fits are shown below:

X Position (x’, y’) = A’x’ + B’y’ + C’x’2 + D’y’2 + E’x’y’ + F’x’3 + G’y’3 + H’x’2y’ + I’x’y’2 + X’0 (17)

Y Position (x’, y’) = J’x’ + K’y’ + L’x’2 + M’y’2 + N’x’y’ + P’x’3 + Q’y’3 + R’x’2y’ + S’x’y’2 + Y’0 (18)
The parameters A’ through Y’0 are coefficients. It is important to note that the fits (17) and (18) include constant terms X’0 and Y’0. Also, these fits use the image pixel coordinates (x, y, x’, and y’) as opposed to the transformed pixel coordinates (u, v, u’, and v’). The actual pixel position (the pixel location where a certain star’s center is on the NIC-FPS FITS image) can be calculated from the theoretical pixel position (the pixel location where a certain star’s center should be in order for the sky coordinates to display correctly) in terms of x’ and y’ through the following equations:

x = X Position (x’, y’) (19)

y = Y Position (x’, y’) (20)

In (19) and (20), x’ and y’ are the theoretical pixel position and x and y are the actual pixel position. It is important to note that the actual pixel positions obtained through (19) and (20) above are not exact and depend on how well the best-fit functions predict the distortion.

2.4
The Final Distortion Map and Final Best Fit Functions

The functions ‘plotDist.pro’ and ‘plotDist2.pro’ completed their tasks by generating various vector plots and by returning the coefficients of the six final best-fit functions. In addition, the function ‘plotSurface.pro’ generated surface plots of two of the best-fit functions. These plots and coefficients employed the data from all 10 FITS images, a total of 777 pixel position correlations.
Shown below are vector plots of the final distortion map, final best-fit functions, and the residual errors. On all of the following plots, the axes are scaled such that the origin (u = 0.000, v = 0.000) corresponds to the center pixel (x = 512.000, y = 512.000) on NIC-FPS FITS images. The vector magnitudes are multiplied by 10 to demonstrate the distortion, so a vector of length 50, for example, corresponds to a distortion of 5 pixels on an actual FITS image.

[image: image3.png]600

400

200

~200

—400

~800

NIC—FPS Bistortion Vector Field

/// i ': Cx“‘”\ . %\\\\

%
i s

Y

—600

—400

—200 0 200
NIC—FPS X (pixel)

100

600

Plot (3)

Plot (3) shows the distortion map with vector origins at actual pixel positions. The vectors point toward the corresponding theoretical pixel positions.

[image: image4.png]gest—rit Function

P
ool
ol
2ol
oL
a0 7 '/r;,/f';: AR N
{’%’;1 éy’ I ‘"’\: E R
fp 1l \Q&\
ool b | adiana
/WA/ AT R Y\Mi&
ool
I

—600 -400 200 0 200 100 600
NIG—FPS X (pixel)

Plot (4)

Plot (4) shows the result of applying the 777 actual pixel positions of Plot (3) to the best-fit functions X Pixel Error (3) and Y Pixel Error (4). Thus, Plot (4) closely imitates Plot (3). The vectors originate at the actual pixel positions and point towards the corresponding theoretical pixel positions.

[image: image5.png]NIC=FPS Y {pixel)

residual Error

600

4001

2001

—200-

—400 -

—800 -

—600

—400

—200 [

NIG—FPS X (pixel)

200

100

600

Plot (5)

Plot (5) shows the residual error after subtracting the best-fit functions of Plot (4) from the distortion map of Plot (3).

[image: image6.png]NIC=FPS Y {pixel)

600

400

200

~200

—400

~800

NIL—FF> Uistortion Vector rield

B e B o X
TR N
MR

—600

—400 -200 0 200
NIG—FPS X (pixel)

100

600

Plot (6)

Plot (6) shows the same distortion map with vector origins at theoretical pixel positions. The vectors point toward the corresponding actual pixel positions.
[image: image7.png]gest—rit Function

600

4001

2001

NC—FPS Y {pi

—200- N g

N \ \\‘
N

// L
—a00|- %// e M “ N \A
%ﬁﬁjm“ »‘ x%‘ \\%x

—800 -

T T . 200 o 600
NIG—FPS X (pixal)

Plot (7)

Plot (7) shows the result of applying the 777 theoretical pixel positions of Plot (6) to the best-fit functions X’ Pixel Error (13) and Y’ Pixel Error (14). Thus, Plot (7) closely imitates Plot (6). The vectors originate at the theoretical pixel positions and point towards the corresponding actual pixel positions.

[image: image8.png]NIG-FPS ¥ (pixel)

600

400

200

~200

—400

~600

residual Brror

—600

—200

0
NIC-FPS X (pixel)

200

100

600

Plot (8)

Plot (8) shows the residual error after subtracting the best-fit functions of Plot (7) from the distortion map of Plot (6).

[image: image9.png]NIG=FPS Y (pixel)

600

400

200

~200

Best—fit Function

—a00

~600

ST

Ny
N
W

wa

N

—200 0
NIC-FPS X (pixel)

Plot (9)

Plot (9) shows the result of applying the 777 theoretical pixel positions of Plot (6) to the best-fit functions X Position (17) and Y Position (18). The functions are used to calculate actual pixel positions from theoretical pixel positions. The differences between actual and theoretical positions are then plotted. Thus, Plot (9) also closely resembles the distortion map of Plot (6).

[image: image10.png]1000

EEsSSasmIrIiioss

Best—Fit Function

(@) & Sd-0IN

800

600

400

200

NIC—FPS X (pixel)

Plot (10)

Plot (10) shows the result of applying every 20th pixel to the best-fit functions X Pixel Error (3) and Y Pixel Error (4). Basically, this is an extended version of Plot (4), which only applied the 777 correlated actual pixel positions to the functions X Pixel Error and Y Pixel Error. The vectors originate at actual pixel positions and point toward theoretical pixel positions. On this plot, the axes correspond exactly to NIC-FPS FITS image pixel coordinates.

The two surface plots shown below were generated through the function ‘plotSurface.pro’. Once again, the axes are scaled such that the origin, (u = 0.000, v = 0.000), represents the center pixel, (x = 512.000, y = 512.000), on NIC-FPS FITS images. Plot (11) shows the best-fit function X Pixel Error (3) and Plot (12) shows the best-fit function Y Pixel Error (4).

[image: image11.png]

Plot (11)
[image: image12.png]©

Plot (12)
The coefficients of the six best-fit functions returned by ‘plotDist.pro’ and ‘plotDist2.pro’ are shown below.

X Pixel Error (u, v) = Au + Bv + Cu2 + Dv2 + Euv + Fu3 + Gv3 + Hu2v + Iuv2 (3)
A = 0.0035292142
B = 0.00012975667
C = -4.6795854e-008
D = 7.2891717e-008
E = 6.3181761e-006
F = -2.8012109e-008
G = -2.1259021e-011
H = 1.2955166e-009
I = -2.4973028e-008
Y Pixel Error (u, v) = Ju + Kv + Lu2 + Mv2 + Nuv + Pu3 + Qv3 + Ru2v + Suv2 (4)

J = -0.0010530106
K = -0.00017959324
L = 3.6781110e-006
M =8.6603236e-006
N = 8.8424647e-007
P = 2.4670905e-010
Q = -2.3671067e-008
R = -2.4000106e-008
S = 4.1091180e-010

X’ Pixel Error (u’, v’) = A’u’ + B’v’ + C’u’2 + D’v’2 + E’u’v’ + F’u’3 + G’v’3 + H’u’2v’ + I’u’v’2 (13)
A’ = -0.0035990303
B’ = -0.00011809308
C’ = 4.2297244e-008
D’ = -7.5637361e-008
E’ = -6.5660043e-006
F’ = 2.8540137e-008
G’ = -3.4148330e-011

H’ = -1.3281023e-009
I’ = 2.5868756e-008

Y’ Pixel Error (u’, v’) = J’u’ + K’v’ + L’u’2 + M’v’2 + N’u’v’ + P’u’3 + Q’v’3 + R’u’2v’ + S’u’v’2 (14)
J’ = 0.0010546213
K’ = 0.000108110658
L’ = -3.7543121e-006
M’ = -8.9446745e-006
N’ = -9.3413805e-007
P’ = -2.42106382e-010
Q’ = 2.4555773e-008
R’ = 2.4106215e-008
S’ = -2.7463140e-010

X Position (x’, y’) = A’x’ + B’y’ + C’x’2 + D’y’2 + E’x’y’ + F’x’3 + G’y’3 + H’x’2y’ + I’x’y’2 + X’0 (17)

A’ = 1.02106530
B’ = 0.017056966
C’ = -4.3730946e-005
D’ = -1.3799720e-005
E’ = -3.15106962e-005
F’ = 2.8547903e-008
G’ = -5.5723316e-011
H’ = -1.3832661e-009
I’ = 2.5825762e-008
X’0 = -7.1042072
Y Position (x’, y’) = J’x’ + K’y’ + L’x’2 + M’y’2 + N’x’y’ + P’x’3 + Q’y’3 + R’x’2y’ + S’x’y’2 + Y’0 (18)
J’ = 0.017423202
K’ = 1.0347672
L’ = -1.5369865e-005
M’ = -4.5872982e-005

N’ = -2.6262299e-005
P’ = -2.5236412e-010
Q’ = 2.4582113e-008
R’ = 2.4949451e-008
S’ = -2.2224779e-010
Y’0 = -10.542904
3.
TWO METHODS OF REMOVING DISTORTION

The first method of removing distortion from NIC-FPS FITS is implemented in ‘nicfps_unwarp.pro’. This function re-allocates flux values of one or more FITS image arrays based on best-fit function coefficients and contains optional keywords to set border pixels to ‘NaN’ (Not a Number) and conserve flux. A physically modified, undistorted image can be created by writing a FITS file using the array returned by ‘nicfps_unwarp.pro’. The code for this method is included in Appendix A.

The second method of removing distortion, the procedure ‘add_distortion_keywords.pro’, adds SIP (Simple Imaging Polynomials) keyword-value pairs obtained from the best-fit function coefficients into the headers of all the FITS files in a certain directory. The modified files are saved under the name ‘filename_gc.fits’, where filename is the name of an original, unmodified FITS file. This procedure leaves the image physically unchanged and only modifies the way the sky coordinates are calculated from the pixel coordinates. The SIP method requires the coordinate (x = CRPIX1, y = CRPIX2) to be the zero-distortion point. Since the best-fit functions were determined using (x = 512.000, y = 512.000) as the zero-distortion point, any header using SIP must have CRPIX1 = 512.000 and CRPIX2 = 512.000. Furthermore, for this method to be useful, the FITS image viewer being used must understand SIP (DS9 is an example) and the newest versions of ASTRONLIB’s ‘xyad.pro’ and ‘adxy.pro’, which also take SIP into account, should be used. The code for this method is included in Appendix B.

The procedure ‘checkheader.pro’ was used to check how well the distortion correction algorithms worked. A NIC-FPS FITS image was processed through either ‘nicfps_unwarp.pro’ or ‘add_distortion_keywords.pro’ and was then compared to the 2MASS All-Sky Point Source Catalog. The residual errors and several useful statistics were found. The following subsections on the remapping correction method and SIP correction method contain sample corrected images and residual error statistics.

3.1
Correcting the Image by Remapping

The remapping function, ‘nicfps_unwarp.pro’, takes one or more 1024x1024 image arrays as input and sends the array(s) and proper coefficients to the function ‘poly_2d.pro’, which does the actual re-allocation of array flux values. Also, ‘nicfps_unwarp.pro’ includes optional keywords to conserve flux values and set border pixels to ‘NaN’ (Not a Number). Finally, ‘nicfps_unwarp.pro’ returns the new, undistorted FITS array(s).

Upon receiving a distorted FITS image array as input, the function ‘poly_2d.pro’ substitutes every image pixel of coordinates (x’, y’) into the best-fit functions X Position (17) and Y Position (18). These best-fit functions return the pixel position (x, y) whose flux value on the old, distorted image should be at pixel position (x’, y’) on the new, undistorted image. Using the old, distorted array, the flux value at (x, y) is found and placed into (x’, y’) on the new, corrected array using either a cubic, bi-linear, or nearest-neighbor algorithm. Currently, ‘nicfps_unwarp.pro’ calls ‘poly_2d.pro’ with After doing this for every pixel, the corrected array is returned to ‘nicfps_unwarp.pro’.

The following is an example of the application of ‘nicfps_unwarp.pro’ to the images ‘GRB041219.0152_ds_ss.fits’, ‘GRB041219.0154_ds_ss.fits’, ‘GRB041219.0165_ds_ss.fits’, ‘GRB041219.0170_ds_ss.fits’, and ‘GRB041219.0208_ds_ss.fits’.
[image: image13.png]

Image (1)

Image (1) shows ‘GRB041219.0152_ds_ss.fits’, an example of an uncorrected, distorted image.
[image: image14.png]NIC=FPS Y {pixel)

600

400

200

~200

—400

~800

NIL—FF> Uistortion Vector rield

% MM\\\\\\\§
%W LR
| | | | | | |
Teoo 400 200 0 200 400 600

NIC—FPS X (pixel)

Plot (13)

Plot (13) shows the distortion map for the five images listed above prior to correction. A total of 302 positions were correlated using the 2MASS catalog. The center pixel, (x = 512.000, y = 512.000), is configured as the zero-distortion and reference point. The offset vectors originate at the actual pixel positions (where the stars actually appear on the uncorrected image) and point towards the theoretical pixel positions (where the stars should show up for their sky coordinates to display correctly). The vector lengths are multiplied by 10 to make the distortion more evident, so a vector length of 100 represents an offset of 10 pixels. The axes on this vector plot correspond exactly to NIC-FPS FITS image pixel coordinates.
[image: image15.png]Number of Errars within Magritude Range

Error Magnitude Counts of Distorted Images
T T T

100 T T

0

50

0

°

.
/%% A2

10
Error Magnitude (pixels)

Plot (14)
Plot (14) shows a histogram of error magnitude counts for the set of five distorted images (302 position correlations). There are a significant amount of error magnitudes greater than 1 pixel, and a few are larger than 9 pixels. Several statistics for the set of five distorted images are shown below.
Mean of Error Magnitudes: 2.075 pixels
Standard Deviation of Error Magnitudes: 2.215 pixels
Root Mean Square of Error Magnitudes: 3.032 pixels
Maximum Error Magnitude: 9.661 pixels

The five images listed above were then processed for distortion through ‘nicfps_unwarp.pro’.
[image: image16.png]

Image (2)

Image (2) shows one of the images (‘GRB041219.0152_ds_ss.fits’) that has been processed for distortion through ‘nicfps_unwarp.pro’. The warping is most evident at the bottom left and bottom right corners.
[image: image18.png]NIC=FPS Y {pixel)

NIE—FP> Distartion YVector rield

ol
200 : o - . -

—200(- c
—ao0f- MO [N
—so0f-
I I I I I I I
60 400 200 0 200 400 600

NIC=FPS X (pixel)

Plot (15)

Plot (15) shows the distortion map of the five images listed above after correction with ‘nicfps_unwarp.pro’. The configuration of axes and vector lengths is the same as Plot (13).
[image: image19.png]Numbsr of Errors within Magrituds Ranga

error Magnitude Counts of Listorted Images

50 T T

D/%ﬂ%mﬂm ‘

a 2
Error Magnitude (pixels)

Plot (16)

Plot (16) shows a histogram of error magnitude counts for the set of five images listed above after correcting for distortion with ‘nicfps_unwarp.pro’. There are few error magnitudes greater than 1 pixel, and none are greater than 2 pixels. Several statistics for the set of five undistorted images are shown below.
Mean of Error Magnitudes: 0.444 pixels
Standard Deviation of Error Magnitudes: 0.272 pixels
Root Mean Square of Error Magnitudes: 0.521 pixels
Maximum Error Magnitude: 1.698 pixels

It is important to note that this method of distortion correction (unlike the SIP method described in the next subsection) does not require a certain CRPIX value in the FITS headers. The function ‘nicpfs_unwarp.pro’ will correct for distortion independently of the header. Moreover, as long as the CRPIX values have correct corresponding CRVAL values on the corrected image, every pixel position should display the correct sky coordinates within the error range given by the statistics above. It does not matter which reference pixel is chosen for the sky coordinates.
3.2
Correcting the Image through SIP (Simple Imaging Polynomials)

The SIP (Simple Imaging Polynomials) correction method is implemented in the procedure ‘add_distortion_keywords.pro’, which adds SIP keyword-value pairs to the headers of all the FITS files in a certain directory. The modified files are saved under the name ‘filename_gc.fits’, where filename is the name of the original, unmodified file. This method of distortion correction leaves the images physically unchanged. Only the process of calculating sky coordinates from pixel coordinates and pixel coordinates from sky coordinates is modified. This method requires the coordinate (x = CRPIX1, y = CRPIX2) to be the zero-distortion point. Since the distortion map and best-fit functions were created with (x = 512.000, y = 512.000) as the arbitrarily chosen zero-distortion point, any FITS image using SIP must have CRPIX1 = 512.000 and CRPIX2 = 512.000 in its header. There is currently no agreed-upon standard for representing distortions in FITS headers, so not all FITS image viewers recognize SIP keywords. One viewer that does take SIP into account is DS9. Also, the newest versions of ASTRONLIB’s ‘adxy.pro’ and ‘xyad.pro’ recognize SIP.

The SIP method uses the coefficients from the best-fit functions X Pixel Error (3), Y Pixel Error (4),

X’ Pixel Error (13), and Y’ Pixel Error (14). When an image header with SIP keywords is used to calculate sky coordinates from pixel coordinates, the actual pixel position (x, y) is first substituted into equations (9) and (10), which use the functions X Pixel Error (3) and Y Pixel Error (4). The resulting theoretical pixel position (x’, y’) represents where an object at (x, y) would show up if there was no optical distortion. The sky coordinates of (x’, y’) are returned. On the other hand, when an image header with SIP keywords is used to calculate pixel coordinates from sky coordinates, the theoretical pixel position (x’, y’) that is returned from the sky coordinates, which represents where an object would show up if there was no optical distortion, is substituted into equations (15) and (16), which use the functions X’ Pixel Error (13) and Y’ Pixel Error (14). The resulting actual pixel position (x, y) represents where an object with those sky coordinates actually shows up on the distorted image. The position (x, y) is returned. This is the process of pixel-to-sky and sky-to-pixel calculations done by appropriate image viewers and the new versions of ‘adxy.pro’ and ‘xyad.pro’ when SIP keywords are present.

The following is an example of the application of ‘add_distortion_keywords.pro’ to the uncorrected images ‘GRB041219.0152_ds_ss.fits’, ‘GRB041219.0154_ds_ss.fits’, ‘GRB041219.0165_ds_ss.fits’, ‘GRB041219.0170_ds_ss.fits’, and ‘GRB041219.0208_ds_ss.fits’. The distortion map (Plot 13), histogram of error magnitudes (Plot 14), and several error statistics for this set of uncorrected images are given in the previous subsection. Shown on the next page is one of the image headers after addition of SIP keywords through ‘add_distortion_keywords.pro’.
[image: image21.png]CTYPEL = 'RA---TAN-SIP' /UWCS projection
CTYPEZ = 'DEC--TAN-SIP' /VCS projection

CRPIXL 512.000 /NCS reference pixel
CRPIXZ 512.000 /NCS reference pixel
CRVALL 6.1192474 / WCS reference sky pos

CRVALZ 62.841383 / WCS reference sky pos

[image: image23.png]A_ORDER 3
0L 0.000129757
10z 7.28917E-008
03 -2.12590E-011
1o 0.00352521
11 6.31818E-006
12 -2.49730E-008
20 -4.67959E-008
21 1.29552E-009
30 -2.80121E-008
\ DX 10

ORDER 3

-0.000179593
8.66032E-006
-2.367L1E-008
“0.00105301
8.84246E-007
4.10912E-010
3.678L1E-006
-2.40001E-008
2.46709E-010
10

3
-0.000118093
-7.56374E-008
-3.41483E-011
~0.00359903
-6. 56600E-006
2.58688E-008
4.22972E-008
-1.32810E-009
2.85401E-008
3
0.000108111
-5.94467E-006
2.45558E-008
0.00105462
-5.34138E-007
-2.74631E-010
-3.75431E-006
2.41062E-008
o AZ10ER-010

£

Order of u-axis corrections
v tern

: vz term

vA3 temm

: u term

v tern

: vtz term

w2 temm

: w2y e

w3 tern

+ Max correction for u-axis

Order of v-axis corrections

: v term

vAz temn

: w3 term

u temm

: uv tern

Az tern

: w2 term

urzy temn

: w3 term

Mex correction for v axis
Order of u'-axis corrections
v temm

22 tern

A3 tern

tern

v tem

va2 tern

A2 tern

A2y tern

A3 tem

rder of v'-axis corrections
temn

22 tern

A3 tern

tern

v tem

va2 tern

A2 tern

A2y tern

A7 rerm

e EcERq<dDEEREEREd

Image (3)
As shown in Image (3), the projection type (CTYPE1 and CTYPE2) is changed from ‘RA---TAN’ and ‘DEC--TAN’ to ‘RA---TAN-SIP’ and ‘DEC--TAN-SIP’. The CRPIX values are configured to the center pixel, (x = 512.000, y = 512.000), and the correct sky coordinates of this pixel are specified by CRVAL. The values of the keywords A_ORDER, B_ORDER, AP_ORDER, and BP_ORDER specify the orders of the best-fit functions X Pixel Error (3), Y Pixel Error (4), X’ Pixel Error (15), and Y’ Pixel Error (16), respectively. The values of the keywords A_i_j specify the coefficients of the terms uivj for the function X Pixel Error (3). The values of the keywords B_i_j specify the coefficients of the terms uivj for the function Y Pixel Error (4). The values of the keywords AP_i_j specify the coefficients of the terms u’iv’j for the function X’ Pixel Error (15). The values of the keywords BP_i_j specify the coefficients of the terms u’iv’j for the function Y’ Pixel Error (16). These are the same coefficients that were listed in section 2.4, which described the final distortion map and final best-fit functions. Finally, the values of the keywords A_DMAX and B_DMAX specify the maximum value of the functions X Pixel Error (3) and Y Pixel Error (4), respectively, within their used ranges.

[image: image25.png]NIC-FPS Y {pixel}

NIC—FPa Uistartion Vectar Field

600

400

200

~200

—400

~600

[y i o S B
| | | | I | |
600 —400 200 o 200 100 00

NIC—FPS X (pixely

Plot (17)
Plot (17) shows the distortion map of the five images after correcting with ‘add_distortion_keywords.pro’. The creation of the map required the newest versions of ASTRONLIB’s ‘adxy.pro’ and ‘xyad.pro’, which interpret SIP keywords. The configuration of axes and vector lengths is the same as in Plot (13) and Plot (15).
[image: image26.png]Error Magnitude Counts of Distorted Images
T

50 T

T
\

=

Number of Errors within Magritude Range
T

2D e

o 1 2
Error Magnitude (pixels)

Plot (18)
Plot (18) shows a histogram of error magnitude counts for the set of five images listed above after correcting for distortion with ‘add_distortion_keywords.pro’. There are few error magnitudes greater than 1 pixel. Several statistics for the set of five corrected images are shown below.
Mean of Error Magnitudes: 0.537 pixels
Standard Deviation of Error Magnitudes: 0.340 pixels
Root Mean Square of Error Magnitudes: 0.635 pixels
Maximum Error Magnitude: 2.147 pixels

As mentioned previously, for the SIP method to work properly, CRPIX must be set to the center pixel, (x = 512.000, y = 512.000). Moreover, the FITS viewer must understand SIP keywords for sky coordinates to display correctly and any IDL programs that are converting from pixel to sky coordinates or vice versa using images with SIP keywords must use the newest ASTRONLIB procedures.

4.
SUMMARY

The NIC-FPS distortion map was generated by comparing 777 actual pixel positions of star centers on 10 different FITS images with corresponding theoretical pixel positions of where the star centers should show up. The theoretical pixel positions were obtained by converting the sky coordinate information of the same star field from the 2MASS All-Sky Point Source Catalog (astrometric uncertainty less than 0.2”) to pixel coordinates. The differences between corresponding actual and theoretical pixel positions were stored as errors, six third-order polynomial functions were fit to the data, and various plots of the distortion map and best-fit functions were created.

The two methods of correcting distortion were implemented in ‘nicfps_unwarp.pro’ and ‘add_distortion_keywords.pro’. The function ‘nicfps_unwarp’ re-allocates flux values of one or more FITS arrays based on the coefficients of the best-fit functions and includes optional keywords to set the border pixels to ‘NaN’ (Not a Number) and conserve the flux. A physically modified, undistorted image can be created by writing a FITS file using the array returned by ‘nicfps_unwarp.pro’. The procedure ‘add_distortion_keywords.pro’ adds SIP (Simple Imaging Polynomials) keywords and values obtained from the best-fit functions to the headers of all the FITS files in a certain directory. This method modifies the way sky coordinates are calculated from pixel coordinates and vice versa. The SIP method is not a FITS standard, but viewers like DS9 and new versions of ASTRONLIB procedures like ‘adxy.pro’ and ‘xyad.pro’ understand SIP keywords. This method requires that CRPIX1 = 512.000 and CRPIX2 = 512.000.
As demonstrated by Plot (16) and Plot (18), both distortion correction methods significantly reduced offsets due to distortion on the five analyzed images. The vast majority of errors after correction were less than 1 pixel. The function ‘nicfps_unwarp.pro’ reduced the mean error and standard deviation to 0.444 ± 0.272 pixels. The maximum error magnitude was approximately 1.7 pixels. The procedure ‘add_distortion_keywords.pro’ reduced the mean error and standard deviation to 0.537 ± 0.340 pixels. The maximum error magnitude was approximately 2.1 pixels.
APPENDIX A – ‘nicfps_unwarp.pro’

function nicfps_unwarp,inarr,area_weight=area_weight,weights=weights, $

 _extra=extra, nan_border=nanbord

;+

; NAME:

; NICFPS_UNWARP

; PURPOSE:

; Remove geometric distortion from one or more NIC-FPS images.

; EXPLANATION:

; Uses the IDL function POLY_2D and a 2D polynomial fit to the NIC-FPS

; distortion map to generate new, un-distorted image(s) from one or more

; NIC-FPS images. By default,

; this method does NOT maintain flux; normally, that is achieved by flat-

; fielding. This routine simply re-samples (and interpolates) the values

; in the input image(s) at the appropriate locations to determine the

; values in each pixel of the output image(s). An optional keyword can

; be used to change this behavior in order to maintain flux.

; CALLING SEQUENCE

; outarr = NICFPS_UNWARP (inarr [, /nan_border, /area_weight, $

; weights=weights])

; INPUT:

; inarr -- A 2D image or a 3D array containing a stack of 2D NIC-FPS

; images. These should have the same geometry as raw NIC-FPS

; images, i.e. 1024x1024 images with North up, East left.

; (Reference pixels should not be cropped.)

; OUTPUT:

; outarr -- An array of the same dimensions and type as INARR, containing

; the input images warped to remove geometric distortion. If

; the keyword NAN_BORDER is set, OUTARR is of type FLOAT.

; OPTIONAL KEYWORDS:

; nan_border -- Setting this keyword has two effects: 1) reference pixels

; are set to NaN (!values.f_nan), and 2) regions in each

; new image which correspond to locations outside INARR

; are set to NaN. (Setting these borders to NaN allows

; this border region to be ignored in future averaging,

; median combining, etc.)

; area_weight-- setting this keyword will scale the values of OUTARR such

; that all the flux in INARR is conserved. Effectively

; multiplies each pixel value in OUTARR by the area (in

; pixels) in INARR to which that pixel corresponds.

; Usually, this correction is achieved by flat-fielding, in

; which case this keyword should NOT be set.

; weights -- If the AREA_WEIGHT keyword is set, this keyword can be

; set to the name of a variable which on output will contain

; the weights applied to OUTARR. This will be a FLOAT array

; of the same dimensions as OUTARR (although each 2D slice

; of WEIGHTS will be identical).

; EXAMPLE:

; The following procedure will remove distortion from three NIC-FPS images

; which have been read into the variables im1,im2,im3:

;

; IDL> imstack = [[[im1]], [[im2]], [[im3]]] ;stack images in 3D array

; IDL> unwarped = nicfps_unwarp(imstack, /nan_border)

;

; the variable unwarped now contains the un-distorted image, with edges

; (reference pixels and regions which map outside of input images)

; set to NaN (Not a Number).

; PROCEDURE:

; Locations (x',y') in each new image correspond to locations (x,y) in

; the corresponding input image according to the 2D polynomial equations:

; x'=sum(coeff_x[i,j]*x^j*y^i), y'=sum(coeff_y[i,j]*x^j*y^i),

; with coefficients defined below. The value at (x',y') is then

; set by POLY_2D to the value interpolated for (x,y) in the input image.

;

; /NaN_BORDER sets MISSING=!values.f_nan in the call to POLY_2D.

; /AREA_WEIGHT computes the 1st partial derivatives of the 2D polynomial

; functions; these give the delta(x) and delta(y) (in input pixels) of

; each output pixel. delta(x)*delta(y) is taken to be the area of the

; region to which each new pixel corresponds, and is the factor used to

; adjust the value of each new pixel.

; MODIFICATION HISTORY:

; Written by Nathaniel Cunningham, Univ. of Colorado, June 2005, using

; polynomial coefficients determined by A. Bondarenko.

;-

;polynomial coefficients for poly_2d.

;x'=sum(coeff_x[i,j]*x^j*y^i), y'=sum(coeff_y[i,j]*x^j*y^i)

 coeff_x = [[-7.1042072, 0.017056966, -1.3799720e-005, -5.5723316e-011], $

 [1.0288530, -3.1588962e-005, 2.5825762e-008, 0.0000000000], $

 [-4.3730946e-005, -1.3832661e-009, 0.00000000, 0.00000000], $

 [2.8547903e-008, 0.0000000000, 0.0000000000, 0.0000000000]]

 coeff_y = [[-10.542904, 1.0347672, -4.5872982e-005, 2.4582113e-008], $

 [0.017423202, -2.6262299e-005, -2.2224779e-010, 0.00000], $

 [-1.5369865e-005, 2.4949451e-008, 0.0000000, 0.00000000], $

 [-2.5236412e-010, 0.0000000000, 0.0000000000, 0.0000000]]

;check input array dimensions and type

ndims=size(inarr,/n_dimensions)

if ndims lt 2 or ndims gt 3 then begin

 print, 'INARR must be a 2-D image or a 3-D stack of images'

 return,-1

endif

help,inarr

dims=size(inarr,/dimensions)

if ndims eq 3 then nims=dims[2] else nims=1 ;how many images?

arrtype=size(inarr,/type) ;what datatype?

;create output array of matching dimensions and type

outarr=make_array(dims,type=arrtype,/nozero)

;un-warp each image in the stack

if keyword_set(nanbord) then begin

 newarr=make_array(dims,value=!values.f_nan)

 newarr[4:1019,4:1019,*]=inarr[4:1019,4:1019,*]

 for i=0,nims-1 do outarr[0,0,i]=poly_2d(newarr[*,*,i], $

 coeff_x,coeff_y,missing=!values.f_nan,cubic=-0.5,_extra=extra)

endif else begin

 for i=0,nims-1 do outarr[0,0,i]=poly_2d(inarr[*,*,i], $

 coeff_x,coeff_y,cubic=-0.5,_extra=extra)

endelse

if keyword_set(area_weight) then begin

 ncols=dims[0]

 nrows=dims[1]

 cdims=size(coeff_x,/dimensions)

 nccol=cdims[0]

 ncrow=cdims[1]

 xpos=rebin(findgen(ncols),ncols,nrows)

 ypos=rebin(reform(findgen(nrows),1,nrows),ncols,nrows,nccol)

 ywid=(xwid=fltarr(ncols,nrows))

 for icol=0,3 do begin

 for irow=1,3 do begin

 xwid += coeff_x[icol,irow]*float(irow)*xpos^(irow-1)*ypos^icol

 ywid += coeff_y[irow,icol]*xpos^icol*float(irow)*ypos^(irow-1)

 endfor

 endfor

 weights=rebin(xwid*ywid,ncols,nrows,nims)

 outarr=outarr*weights

endif

return,outarr

end

APPENDIX B – ‘add_distortion_keywords.pro’

;add_distortion_keywords.pro

;This module adds SIP (standard imaging polynomial) keywords to the headers of a directory

;of FITS files. This is the ALTERNATIVE to physically remapping the images with removeDistortion.pro.

;For the WCS to display correctly everywhere on the image, CRPIX must be (512.000, 512.000), and CRVAL

;must show the correct sky coordinates of (512.000, 512.000).

;Anton Bondarenko

pro add_distortion_keywords

 all_files = FILE_SEARCH('C:\RSI\IDL61\dist*.fits')

 ;storing all FITS files into array

 FOR i=0, N_ELEMENTS(all_files) - 1 DO BEGIN

 file = all_files[i]

 FITS_array = MRDFITS(file, 0, header) ;read in file

 SXADDPAR, header, 'CTYPE1', 'RA---TAN-SIP', 'WCS projection'

 SXADDPAR, header, 'CTYPE2', 'DEC--TAN-SIP', 'WCS projection'

 SXADDPAR, header, 'A_ORDER', 3, 'SIP: Order of u-axis corrections'

 SXADDPAR, header, 'A_0_1', +1.2975667E-04, 'SIP: v term'

 SXADDPAR, header, 'A_0_2', +7.2891717E-08, 'SIP: v^2 term'

 SXADDPAR, header, 'A_0_3', -2.1259021E-11, 'SIP: v^3 term'

 SXADDPAR, header, 'A_1_0', +3.5292142E-03, 'SIP: u term'

 SXADDPAR, header, 'A_1_1', +6.3181761E-06, 'SIP: uv term'

 SXADDPAR, header, 'A_1_2', -2.4973028E-08, 'SIP: uv^2 term'

 SXADDPAR, header, 'A_2_0', -4.6795854E-08, 'SIP: u^2 term'

 SXADDPAR, header, 'A_2_1', +1.2955166E-09, 'SIP: u^2v term'

 SXADDPAR, header, 'A_3_0', -2.8012109E-08, 'SIP: u^3 term'

 SXADDPAR, header, 'A_DMAX', 10, 'SIP: Max correction for u-axis'

 SXADDPAR, header, 'B_ORDER', 3, 'SIP: Order of v-axis corrections'

 SXADDPAR, header, 'B_0_1', -1.7959324E-04, 'SIP: v term'

 SXADDPAR, header, 'B_0_2', +8.6603236E-06, 'SIP: v^2 term'

 SXADDPAR, header, 'B_0_3', -2.3671067E-08, 'SIP: v^3 term'

 SXADDPAR, header, 'B_1_0', -1.0530106E-03, 'SIP: u term'

 SXADDPAR, header, 'B_1_1', +8.8424647E-07, 'SIP: uv term'

 SXADDPAR, header, 'B_1_2', +4.1091180E-10, 'SIP: uv^2 term'

 SXADDPAR, header, 'B_2_0', +3.6781110E-06, 'SIP: u^2 term'

 SXADDPAR, header, 'B_2_1', -2.4000106E-08, 'SIP: u^2v term'

 SXADDPAR, header, 'B_3_0', +2.4670905E-10, 'SIP: u^3 term'

 SXADDPAR, header, 'B_DMAX', 10, 'SIP: Max correction for v axis'

 SXADDPAR, header, 'AP_ORDER', 3, 'SIP: Order of u`-axis corrections'

 SXADDPAR, header, 'AP_0_1', -1.1809308E-04, 'SIP: v` term'

 SXADDPAR, header, 'AP_0_2', -7.5637361E-08, 'SIP: v`^2 term'

 SXADDPAR, header, 'AP_0_3', -3.4148330E-11, 'SIP: v`^3 term'

 SXADDPAR, header, 'AP_1_0', -3.5990303E-03, 'SIP: u` term'

 SXADDPAR, header, 'AP_1_1', -6.5660043E-06, 'SIP: u`v` term'

 SXADDPAR, header, 'AP_1_2', +2.5868756E-08, 'SIP: u`v`^2 term'

 SXADDPAR, header, 'AP_2_0', +4.2297244E-08, 'SIP: u`^2 term'

 SXADDPAR, header, 'AP_2_1', -1.3281023E-09, 'SIP: u`^2v` term'

 SXADDPAR, header, 'AP_3_0', +2.8540137E-08, 'SIP: u`^3 term'

 SXADDPAR, header, 'BP_ORDER', 3, 'SIP: Order of v`-axis corrections'

 SXADDPAR, header, 'BP_0_1', +1.0811066E-04, 'SIP: v` term'

 SXADDPAR, header, 'BP_0_2', -8.9446745E-06, 'SIP: v`^2 term'

 SXADDPAR, header, 'BP_0_3', +2.4555773E-08, 'SIP: v`^3 term'

 SXADDPAR, header, 'BP_1_0', +1.0546213E-03, 'SIP: u` term'

 SXADDPAR, header, 'BP_1_1', -9.3413805E-07, 'SIP: u`v` term'

 SXADDPAR, header, 'BP_1_2', -2.7463140E-10, 'SIP: u`v`^2 term'

 SXADDPAR, header, 'BP_2_0', -3.7543121E-06, 'SIP: u`^2 term'

 SXADDPAR, header, 'BP_2_1', +2.4106215E-08, 'SIP: u`^2v` term'

 SXADDPAR, header, 'BP_3_0', -2.42106382E-10, 'SIP: u`^3 term'

 ;add distortion keywords to FITS header. The A_a_b and B_a_b keywords

 ;represent the polynomial coefficients for f(u,v) and g(u,v),

 ;(A_a_b is the coefficient for u^a*v^b, for example).

 ;The functions work as follows: u' = u + f(u,v) and v' = v + g(u,v).

 ;Here, (u,v) represents the incorrect pixel position and (u',v') represents the

 ;corrected pixel position. u = p1 - CRPIX1, v = p2 - CRPIX2, and

 ;u' = p1_corrected - CRPIX1, v' = p2_corrected - CRPIX2.

 ;These particular coefficients work only with (CRPIX1 = 512, CRPIX2 = 512)

 len = strlen(file)

 partial = strmid(file, 0, len - 5)

 outfile = partial + '_gc.fits'

 ;modify filename of new file to [file]_corrected.fits

 MWRFITS, FITS_array, outfile , header

 ;write new fits file with adjusted header

 ENDFOR

END

�Best if you have a name with all lower case since IDL is NOT case sensitive but it might be for finding file using the IDL_PATH

