

Optics Mark B. Vincent (CU-CASA)

26 July 2002 CASA-ARL Boulder, CO

ARC Telescope Parameters							
Entrance Aperture Diameter	neter 3404.6 mm						
Entrance Stop Placement	Primary Mirror						
Central Obscuration	780.0 mm diameter						
F/# I	-/10.35						
Camera Design Parameter	Design Value						
Wavelength Range	0.85 – 2.5 μm						
Pixel Scale	0.27" / pixel						
	(1016 x 1016 HgCdTe)						
Pixel Pitch	18.0 µm						
System Effective Focal Length	13592 mm						
System F/#	3.99						
System Field-of-View	4.58' edge-to-edge						
	6.42' corner-to-corner						
NIC-FPS Internal Pupil Diameter	Driven by Etalon (40 mm)						
Collimator Magnification Factor	85.115X						
Pupil Relief Distance from Collimator Lens 3	301 mm						
Transmission including window and Lyot stop (not including filter or etalon)	75 %						

NIC-FPS Image Quality

Optical Design Parameter	Design Value
Geometric Distortion	0.75% at edge
	1.6% at corner
RMS Spot Diameter Performance	Less than 1 pixel at all wavelengths and fields
Refocusing Between Filters	None Required

80 % Diffraction Encircled Energy Diameters

Wavelength (µm)	Best (µm)	Worst (µm)	Diffraction limit (µm)
0.90	11.9	17.4	11.3
1.30	16.7	20.0	16.5
2.00	27.4	37.0	25.2
2.40	32.4	39.7	30.3

Note that the best and worst cases are not necessarily the center and corner fields.

Diameters are for the as designed system.

18 µm pixel size.

Spot Diagrams

		0.850000	0.90000	1.000000	1.300000	1.500000	2.000000	2.400000	
	0,0000, 0,0000 DEG Center	BE O	٥	\odot	۲	ullet	\bigcirc	0	
	0.0000, 0.0191 DEG 1/2 FROM CENTER TO EDGE	۲	٢	٩	۲		۲		
	0.0000, 0.0287 deg 3/4 FROM Center to edge	0	Ç	8		۲	۲	۲	
	0.0000, 0.0382 DEG EDGE	Q	8						
	0.0000, 0.0498 DEG 3/4 FROM EDGE TO CORNER	R	۵	8		<u>S</u>			
	0,0000, 0,0535 DEG Corner Sureace: TMA	٢		۲		, O	٢		
			MATRI	X SPOT D	IAGRAM				
UNIVERSITY OF COLORADO MON JUL 22 2002 UNITS ARE MICRONS.									
	AIRY DIAMS : 8.282-2	24.51	REFE	RENCE : CHI	IEF RAY				
Ball 26 July 2002 5									

RMS Spot Radii

26 July 2002

9

26 July 2002

12

Optical Manufacturing Tolerances

SUR	FACE CEN	TERED TO	OLERANCE	ES: Radii a	and thicknesse	es in mm fo	r room tempe	erature optics. Irre	gularities in fring	es at 6328 Å. Wed	ge in µm
Surf	Radius	Tol Min	Tol Max	Irreg	Thickness	Tol Min	Tol Max	Wedge			
Colli	mator lens	Fused Si	lica								
14	-288.019	-0.4	0.4	1	-9.50	-0.2	0.2	50			
15	-132.797	-0.2	0.2	1							
Colli	mator lens 2	2 CaF2									
17	-132.509	-0.2	0.2	1	-29.97	-0.2	0.2	50			
18	264.612	-0.3	0.3	1							
Colli	mator lens 3	3 ZnSe									
20	90.572	-0.1	0.15	1	-8.89	-0.2	0.2	20			
21	101.080	-0.1	0.1	1							
Came	era lens 1 Z	InSe									
42	-86.479*	-0.09	0.09	0.5	-12.00	-0.2	0.2	20			
43	-73.025*	-0.07	0.07	0.5							
Came	era lens 2 C	CaF2									
45	-79.981*	-0.1	0.1	0.5	-18.66	-0.2	0.2	50			
46	122.507*	-0.1	0.1	0.5							
Came	era lens 3 F	used Silica	L								
48	80.780*	-0.08	0.08	0.5	-12.00	-0.2	0.2	30			
49	449.377*	-0.4	0.4	0.5							
Came	era lens 4 C	CaF2									
51	-93.701*	-0.1	0.1	0.5	-16.52	-0.2	0.2	50			
52	136.957*	-0.15	0.15	0.5							
Came	era lens 5 F	used Silica	L								
54	35.700*	-0.1	0.1	0.5	-8.00	-0.2	0.2	50			
55	374.904*	-0.4	0.4	0.5							

*Strongly prefer that these radii be matched to test plate radii to tighten the radii tolerances to about a fringe.

Camera Lens #2 Decentered by 50 µm

Worst Corner

Camera Lens #2 Decentered by 50 µm.

Worst Corner.

Camera Lens #2 Decentered by 50 µm

Best Corner

Camera Upgrade

When the seeing at ARC improves to where 0.5" seeing is common, NIC-FPS will be ready.

By replacing the camera and H-1RG detector with a new camera and an H-2RG, the pixel scale can drop from 0.27 to 0.144"/pixel. The field of view would then increase by $\sim 6\%$ with minimal vignetting. At 0.15-0.16"/pixel, the field would be even larger, at the cost of some vignetting in the corners. New camera can fit into the same space, but expanding the length by ~ 36 mm provides excellent image quality.

Upgrade Camera's Image Quality

