NIC-FPS Bad Pixel Mapping

	Date:
	June 29, 2005

	Document Number:
	

	Revision:
	Initial Release

	Contract No.:
	

	CDRL No.:
	

	Prepared By:
	
	
	29-Jun-05

	
	Carl Schmidt
	
	Date

	
	
	
	

	Reviewed By:
	
	
	

	
	Stephane Beland
	
	Date

	
	
	
	

	Reviewed By:
	
	
	

	
	Fred Hearty
	
	Date

	
	
	
	

	Approved By:
	
	
	

	
	Nathaniel Cunningham
	
	Date

	
	
	
	

	Approved By:
	
	
	

	
	Robert Valentine
	
	Date

	
	
	
	

	Approved By:
	
	
	

	
	Anton Bondarenko
	
	Date

	
	
	
	

Center for Astrophysics & Space Astronomy

University of Colorado

Campus Box 593

Boulder, Colorado 80309

	REVISIONS

	Letter
	ECO No.
	Description
	Check
	Approved
	Date

	
	
	Initial Release
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	Original Release
	
	THE UNIVERSITY OF COLORADO

	Name
	Date
	At Boulder

	Drawn:
Carl A. Schmidt
	6/29/05
	The Center for Astrophysics and Space Astronomy

	Reviewed:

	
	

	Approved:

	
	Document Name

	
	
	

	
	
	
	
	
	

	
	
	Size
	Code Indent No.
	Document No.
	Rev

	
	
	A
	
	
	

	
	
	Scale: N/A
	
	

Bad pixels are non-linear in there response to light. It is much more common that a pixel responds linearly but records counts that are higher (hotter) or lower (colder) than most of the other pixels in a detector array. Being hot or cold does not make a pixel bad, unless of course the pixel’s so hot that it saturates before the others do. A saturated pixel does not respond at all to light and becomes non-linear in its sensitivity.

When a flat field is taken and dark subtracted, a histogram plotted of the number of counts recorded versus the number of pixels will generate a Gaussian distribution. Pixels which are very hot will have a high number of counts and fall to the right of the Gaussian having higher than normal counts, while cold pixels fall to the left. Because these pixels are not necessarily nonlinear and potentially good pixels, a way is needed to distinguish a pixel’s linearity in response to light. This can be done by dividing one flat field by another. Hot and cold pixels are consistent between the two flats, and are therefore included in the bell of the resulting Gaussian curve when a histogram is plotted. Nonlinear pixels will have a different ratio of counts between two flats then the ratio for linear pixels and will therefore lie outside of the Gaussian curve an be easily identified.
Procedure:
Step 1: A data set was taken consisting of flat fields in z band on the sky and a corresponding dark exposure. Each image had the same exposure time and flat field data was taken from complete detector saturation at twilight until the number of counts read by the detector barely exceeded those read in the dark exposures. Seven sets of ten flat field images were taken in all. Each group of ten was a dither pattern on the sky taken in the order:
3,4 5,6

1,2
9,10 7,8
Step 2: Using the IDL routine darksub.pro each of the seventy flat field images was dark subtracted. All dark and flat images were of the same exposure time. An example of the histogram of one of these images is shown in figure 1 below.
[image: image1.png]108

10°

10!

5000

10000

i
[
{
/

15000

20000

25000

Figure 1. Histogram of a dark subtracted flat field image. The peaks on the left represent border pixels. To the right of these is many small peaks representing cold, but mostly linear pixels. The step on the left side of the main Gaussian peak occurs from a physical vignetting of the light which would otherwise hit the bottom portion of the detector. The top of the Gaussian is jagged due to slight differences in response in different columns and quadrants of the detector array. The noise at the far right is caused by hot, but again mostly linear pixels.
Step 3: A “super sky flat” is made. A dither pattern of 10 dark subtracted flat field images was chosen with counts in the low to middle range (~ 20,000 counts). All ten images were summed together and the resulting image was divided by its mean number of counts to normalize it. The average number of counts in each pixel of the super sky flat was then one. This was done using the IRAF routines imcombine, imstat and imarith.

Step 4: All seventy dark subtracted flat field images were divided by the super sky flat. This was done using the flatdiv.pro IDL routine. In this routine the border pixels were removed from the output files, leaving all seventy resultant images with the dimensions 1016x1016 pixels. This changed the histogram significantly as shown in figure 2 below.

 [image: image2.png]

Figure 2. The image in Figure 1 after being divided by the super sky flat. The noise on either side of the Gaussian is from potentially nonlinear and bad pixels. The border pixels have been removed and the Gaussian has narrowed showing good linearity
Step 5: Ten processed images in each dither pattern were added together, resulting in six new images. Because one of the seven original dither patterns in the data set was used to make the super sky flat, dividing images in this group by this flat will yield constant instead of a distribution when they’re added. Thus, six of the seven dither patterns gave non-trivial results. Adding the images was does using the IRAF imcombine routine and simply made features of more obvious when a histogram was plotted. Nonlinear hot and cold pixels resided outside of the Gaussian curve in each of the ten images and thus did not appear inside the Gaussian of the resultant image as seen in the example below.

[image: image3.png]

Figure 3. The resulting histogram after ten processed images from a dither pattern were added. Notice the step in the right side of the curve. These pixels read higher counts than normal and reside in the bottom portion of the detector array where it is vignetted. This step suggests that the effect of vignetting was not entirely removed when the images were flat divided.
Step 6: In each of the six resulting images created from the previous steps, the pixels causing the noise outside the Gaussian are set have a value of zero. All pixels residing inside the curve are set to have a value of one. This is done using the IRAF imreplace routine. There was always between 250 and 600 pixels set to zero in all of the six images.
Step 7: Now that all six images have pixels values of zero or one only, all six can be added together. Pixels which are linear and reside within the Gaussian in all of the images will have a value of six in the resultant image. Pixels appearing outside the Gaussian in any of the added images will have values smaller than six and zero should they be nonlinear in each of the six images.

Step 8: Check for features appearing in the resultant image which are not inherent to the detector array. In this case, a star appears twice in the image as seen in exposures 3,4,9, and 10 when each dither sequence was taken. Other flats were examined in the regions of the detector where the two images of the star lie and no abnormal pixels can be found in the areas. With this knowledge, the pixels in the two images of the star were set as good pixels by giving them value of six. This was done using the stardel.pro routine in IDL.
Step 9: A histogram of the resulting image was then plotted, as seen below.
[image: image4.png]

Figure 4. Histogram showing frequency which pixels respond nonlinearly to light. Pixels with a zero value are always nonlinear, those with a value of six are always linear.
The imreplace routine was again used to set good pixels to have a value of 1 and bad pixels to have a zero value. After some discussion, it was decided to set all pixels with a current value of two or below as bad and pixels with a value of three or above as good. The result was about 275 bad pixels total, shown as little black spots in the image of the bad pixel map below.
[image: image5.png]

Step 10: A program badpixmask.pro. was then made to take one or multiple images and sets the bad pixels to have a value not equal to a number. The good pixels and border pixels in the image being masked had values left unchanged. It was best not to give bad pixels a numerical value like zero because this could complicate image statistics and processing.

A list of IDL program codes

Dark Subtraction:

;get filenames of image files to be dark subtracted

filenames = dialog_pickfile(/multiple_files, filter = '*.fits', $

 title = 'FITS file to be dark subtracted')

;how many images?

nimages = n_elements(filenames)

;get filename of dark file to be subtracted

dark = dialog_pickfile(title = 'dark FITS file', filter = '*.fits')

;get path where dark-subtracted files are to be written

ds_path = dialog_pickfile(title = $

 'choose directory to write dark-subracted FITS', $

 /directory)

;read in dark image, convert to float

dark = float(mrdfits(dark, 0, darkhead, /unsigned))

FOR i = 0, nimages-1 DO BEGIN ;for each image file

;read in image, conver to float; get header as well

 image = float(mrdfits(filenames[i], 0, header, /unsigned))

;subtract dark image

 image_ds = image-dark

;me image_flat = image/dark

;strip directory path from image filename (oth element)

 file_nopath = reverse(strsplit(filenames[i], '/', /extract))

;strip off .fits suffix

 file_begin = strsplit(file_nopath[0], '.fits', /extract, /regex)

;add write path and _ds.fits suffix

 ds_filename = file_begin[0] + '_ds.fits'

;write dark-subtracted image and original image header to file

 print, 'WRITING TO ' + ds_filename

 mwrfits, image_ds, ds_filename, header

;write dark-subtracted and mode'd image and original image header to file

; print, 'WRITING TO ' + dm_filename

; mwrfits, image_dm, dm_filename, header

ENDFOR

END

Flat Division:
pro flatdiv

;get filenames of image files to be flat divided

filenames = dialog_pickfile(/multiple_files, filter = '*.fits', $

 title = 'FITS file to be flat divided')

;this code has been modified to divide by a flat field. the pickfile box

;still pops up looking for images to dark subtract, but now give it the

;files you want to flat divide and the flat instead. it also will crop the

;four reference pixels before giving an output image -carl schmidt 6/8/05

;how many images?

nimages = n_elements(filenames)

;get filename of dark file to be subtracted

dark = dialog_pickfile(title = 'flat FITS file', filter = '*.fits')

;get path where dark-subtracted files are to be written

ds_path = dialog_pickfile(title = $

 'choose directory to write flat fielded FITS', $

 /directory)

;read in dark image, convert to float

dark = float(mrdfits(dark, 0, darkhead, /unsigned))

FOR i = 0, nimages-1 DO BEGIN ;for each image file

;read in image, conver to float; get header as well

 image = float(mrdfits(filenames[i], 0, header, /unsigned))

;divide flat image

image_flat = image/dark

;strip directory path from image filename (oth element)

 file_nopath = reverse(strsplit(filenames[i], '/', /extract))

;strip off .fits suffix

 file_begin = strsplit(file_nopath[0], '.fits', /extract, /regex)

;add write path and _ds.fits suffix

 ;ds_filename = file_begin[0] + '_ds.fits'

ds_filename = file_begin[0] + '_flat.fits'

;write dark-subtracted image and original image header to file

 print, 'WRITING TO ' + ds_filename

 ;image_ds = image_ds[4:1019,4:1019]

 image_flat = image_flat[4:1019,4:1019]

 ;mwrfits, image_ds, ds_filename, header

 mwrfits, image_flat, ds_filename, header

;write dark-subtracted and mode'd image and original image header to file

; print, 'WRITING TO ' + dm_filename

; mwrfits, image_dm, dm_filename, header

ENDFOR

END

Star Removal:
pro stardel

filenames = dialog_pickfile(filter = '*.fits', $

 title = 'FITS file to get rid o them stars')

image = float(mrdfits(filenames, 0, header, /unsigned))

image[1:14,316:326]=6.0

image[1:13,241:251]=6.0

filenames += "~"

mwrfits, image,filenames, header

end

Bad pixel Masking:
pro badpixmask

;get filenames of image files to have bad pixels masked

filenames = dialog_pickfile(/multiple_files, filter = '*.fits', $

 title = 'FITS files to have bad pixels masked')

;how many images?

nimages = n_elements(filenames)

;get filename of the pixel map file to use

map = dialog_pickfile(title = 'bad pixel map FITS file', filter = '*.fits')

;get path where masked files are to be written

bpm_path = dialog_pickfile(title = $

 'choose directory to write masked FITS', $

 /directory)

;read in bad pixel map image, convert to float

map = float(mrdfits(map, 0, header, /unsigned))

;create a 1024 by 1024 array of 1's

map2=replicate(1,1024,1024)

;put the bad pixel map in the center (for map's without border pixels only)

;give the bad pixel map '1 valued' border pixels

map2[4:1019,4:1019] = map

FOR i = 0, nimages-1 DO BEGIN

;for each image file

;read in image, convert to float; get header as well

 image = float(mrdfits(filenames[i], 0, header, /unsigned))

;convert '0 valued' bad pixels to not a number value

image[where(map2 eq 0)] = !values.f_nan

;mapstack = rebin(map2,1024,1024,nimages)

;strip directory path from image filename (oth element)

 file_nopath = reverse(strsplit(filenames[i], '/', /extract))

;strip off .fits suffix

 file_begin = strsplit(file_nopath[0], '.fits', /extract, /regex)

;add write path and _ds.fits suffix

 bpm_filename = file_begin[0] + '_masked.fits'

;write masked image and original image header to file

 print, 'WRITING TO ' + bpm_filename

 mwrfits, image, bpm_filename, header

ENDFOR

END

